| 注册
首页|期刊导航|安徽大学学报(自然科学版)|基于项目属性和局部优化的协同过滤推荐算法

基于项目属性和局部优化的协同过滤推荐算法

刘慧婷 陈超 吴共庆 赵鹏

安徽大学学报(自然科学版)Issue(6):23-29,7.
安徽大学学报(自然科学版)Issue(6):23-29,7.DOI:10.3969/j.issn.1000-2162.2014.06.004

基于项目属性和局部优化的协同过滤推荐算法

Collaborative filtering recommendation algorithm based on item attribute and local optimization

刘慧婷 1陈超 1吴共庆 2赵鹏1

作者信息

  • 1. 安徽大学 计算机科学与技术学院,安徽 合肥 230601
  • 2. 合肥工业大学 计算机与信息学院,安徽 合肥 230009
  • 折叠

摘要

Abstract

To overcome the impact of data sparsity on traditional collaborative filtering,we presented collaborative filtering recommendation algorithm based on item attribute and local optimization,named CUCF.We firstly used the improved j accard coefficient to optimize the similarity of item scoring.Then,we employed the Laplace smoothing method to get the similarity of item attribute.Finally,we made a linear combination of these two similarity results of items,and then used local optimization options to select neighbors as a reference for the target group. Our experimental results showed that the CUCF algorithm could reduce the negative impact of data sparsity on recommendations and effectively lower the mean absolute error of prediction consequences.Our experiments further contrast CUCF with the other four different recommendation methods,the precision of prediction was increased from 7.1% to 1 5.5%.It proved that in terms of prediction accuracy, the CUCF algorithm could achieve better results.

关键词

拉普拉斯平滑/项目属性/局部优化/协同过滤

Key words

Laplace smoothing/item attribute/local optimization/collaborative filtering

分类

信息技术与安全科学

引用本文复制引用

刘慧婷,陈超,吴共庆,赵鹏..基于项目属性和局部优化的协同过滤推荐算法[J].安徽大学学报(自然科学版),2014,(6):23-29,7.

基金项目

国家863计划课题“多源异构数据集成与挖掘的关键技术研究”资助项目(2012AA011005) (2012AA011005)

国家自然科学基金资助项目(61202227) (61202227)

安徽省自然科学基金资助项目(1408085MF122) (1408085MF122)

安徽大学学报(自然科学版)

OA北大核心CSTPCD

1000-2162

访问量0
|
下载量0
段落导航相关论文