北华大学学报(自然科学版)Issue(3):296-298,3.DOI:10.11713/j.issn.1009-4822.2014.03.004
时间分数阶薛定谔方程的数值方法
A Numerical Method for Solving Time Fractional Schrödinger Equation
摘要
Abstract
Combined the nonstandard finite difference schemes,a numerical method for solving the time fractional Schrödinger equation has been presented,denominator function for the space discrete derivatives is a space step function,and the difference scheme is unconditional stability and convergence. Numerical example shows that the numerical method has not only good convergence and stability,but also higher precision. So the numerical method is a practical method.关键词
分数阶薛定谔方程/非标准有限差分格式/无条件收敛/无条件稳定Key words
fractional Schrödinger equation/nonstandard finite difference schemes/unconditional convergence/unconditional stability分类
数理科学引用本文复制引用
张艳敏,张丽春..时间分数阶薛定谔方程的数值方法[J].北华大学学报(自然科学版),2014,(3):296-298,3.基金项目
国家自然科学基金项目(11271101) (11271101)