北华大学学报(自然科学版)Issue(4):443-448,6.DOI:10.11713/j.issn.1009-4822.2014.04.005
因子Von Neumann代数中套子代数上零点保ξ-Lie积映射
Linear Maps Preserving ξ-Lie Product at Zero Point on Nest Subalgebras of Factor Von Neumann Algebras
摘要
Abstract
This paper studied the relationship between linear maps preserving ξ-Lie product in subset determined at zero product on nest subalgebras and isomorphism and anti-isomorphism, and proved that if φ satisfies φ([A,B]ξ)=[φ(A),φ(B)]ξfor all A,B∈algMβ with AB≠0,then φis an isomorphism or an anti-isomorphism, where algMβ,algMγbe non-trivial nest subalgebras in factor von Neumann algebra M,φ:algMβ→algMγis a linear bi-jective mapping with property φ(I)=I and ξ≠0,1 is a constant.关键词
套子代数/ξ-Lie积/同构Key words
nest subalgebra/ξ-Lie product/isomorphism分类
数理科学引用本文复制引用
杨爱丽,张建华..因子Von Neumann代数中套子代数上零点保ξ-Lie积映射[J].北华大学学报(自然科学版),2014,(4):443-448,6.基金项目
陕西省教育厅基金项目(12JK0875) (12JK0875)
西安科技大学培育基金项目(200845) (200845)