| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|基于分块矩阵求导的Bézier曲线降阶方法

基于分块矩阵求导的Bézier曲线降阶方法

李建东 杨艳

重庆理工大学学报(自然科学版)Issue(7):142-146,5.
重庆理工大学学报(自然科学版)Issue(7):142-146,5.DOI:10.3969/j.issn.1674-8425(z).2014.07.028

基于分块矩阵求导的Bézier曲线降阶方法

Method for Degree Reduction of Bézier Curve Based on Partitioned Matrix Derivation

李建东 1杨艳1

作者信息

  • 1. 吕梁学院 数学系,山西 吕梁 033000
  • 折叠

摘要

Abstract

The approximation of degree reduction to Bézier curve has its practical application value but is limited by constrained condition of endpoints.It comes up a new method for degree reduction approximation based on partitioned matrix derivation.This new method can produce explicit formula-tion with multi-degree reduction and satisfies constrained condition of endpoints.Finally combining mid-point segmentation with partitioned matrix’s derivation and putting them into numerical experi-ment show the advantages of this algorithm.

关键词

Bézier曲线/降阶/分块矩阵求导/中点分割

Key words

Bézier curve/degree reduction/partitioned matrix derivation/midpoint subdivision

分类

数理科学

引用本文复制引用

李建东,杨艳..基于分块矩阵求导的Bézier曲线降阶方法[J].重庆理工大学学报(自然科学版),2014,(7):142-146,5.

基金项目

吕梁学院科研项目 ()

重庆理工大学学报(自然科学版)

OACSTPCD

1674-8425

访问量0
|
下载量0
段落导航相关论文