| 注册
首页|期刊导航|重庆理工大学学报(自然科学版)|图像多特征融合的障碍物检测

图像多特征融合的障碍物检测

张建勋 汪波 侯之旭 靳冲

重庆理工大学学报(自然科学版)Issue(3):65-70,6.
重庆理工大学学报(自然科学版)Issue(3):65-70,6.DOI:10.3969/j.issn.1674-8425(z).2015.03.013

图像多特征融合的障碍物检测

Obstacle Detection Based on Multi-Feature Fusion

张建勋 1汪波 1侯之旭 1靳冲1

作者信息

  • 1. 重庆理工大学 计算机科学与工程学院,重庆 400054
  • 折叠

摘要

Abstract

Aiming to solving the problem that when the obstacles and ground graphic in outdoor envi-ronment can not be distinguished very obviously,there will be a misjudgment and missing detection phenomenon for the outdoor environment when detecting obstacle based on color or luminance informa-tion,we adopt the method of multiple feature fusion to detect obstacles. LBP algorithm was used in extracting image texture feature. Meanwhile,adaptive canny algorithm was used in extracting obstacle edge information. Texture feature and edge information were merged with linear weighted method,and then updated the background information with Gaussian model method,and at last judged the obstacle by comparing overall differences between two adjacent frames. Compared with traditional three frame method,average background modeling method,the experimental results of Gaussian mixture model method show that Gaussian mixture model achieves a better effect in obstacle detecting when being contrasted to using a single feature.

关键词

障碍物检测/LBP 算法/Canny 算法/线性加权/高斯混合模型

Key words

obstacle detection/LBP algorithm/Canny algorithm/linear weight/Gaussian mixture model

分类

计算机与自动化

引用本文复制引用

张建勋,汪波,侯之旭,靳冲..图像多特征融合的障碍物检测[J].重庆理工大学学报(自然科学版),2015,(3):65-70,6.

基金项目

国家自然科学基金资助项目(61173184);重庆理工大学研究生创新基金资助课题 ()

重庆理工大学学报(自然科学版)

OACSTPCD

1674-8425

访问量0
|
下载量0
段落导航相关论文