| 注册
首页|期刊导航|铁道科学与工程学报|基于视觉注意力和 PLSA 模型的钢轨表面缺陷检测

基于视觉注意力和 PLSA 模型的钢轨表面缺陷检测

王军

铁道科学与工程学报Issue(3):509-514,6.
铁道科学与工程学报Issue(3):509-514,6.

基于视觉注意力和 PLSA 模型的钢轨表面缺陷检测

Rail surface defect detection based on visual attention and PLSA model

王军1

作者信息

  • 1. 电子科技大学 中山学院,广东 中山 528402
  • 折叠

摘要

Abstract

Aimed at the status quo fact that speed,accuracy and classification of rail surface defects are relative-ly low,this paper proposed a rail surface defect detection method based on visual attention and PLSA model method which is a combination of brightness and texture of the visual attention model to detect surface defects of rail,extraction of defects region of the original image,and uses the PLSA model to classify the defects.The ex-perimental results show that the proposed method,improves the speed,precision and classification of rail surface defects detection and can meet the requirements of the rail surface defects detection.

关键词

钢轨表面缺陷/视觉注意力/PLSA/缺陷分类

Key words

surface defects/visual attention/PLSA/defect classification

分类

交通工程

引用本文复制引用

王军..基于视觉注意力和 PLSA 模型的钢轨表面缺陷检测[J].铁道科学与工程学报,2015,(3):509-514,6.

基金项目

国家自然科学基金资助项目(50808025);中山市科技局工业攻关计划项目 ()

铁道科学与工程学报

OA北大核心CSCDCSTPCD

1672-7029

访问量0
|
下载量0
段落导航相关论文