| 注册
首页|期刊导航|电子学报|联合低秩与稀疏先验的高光谱图像压缩感知重建

联合低秩与稀疏先验的高光谱图像压缩感知重建

孙玉宝 吴泽彬 吴敏 刘青山

电子学报Issue(11):2219-2224,6.
电子学报Issue(11):2219-2224,6.DOI:10.3969/j.issn.0372-2112.2014.11.014

联合低秩与稀疏先验的高光谱图像压缩感知重建

Compressed Sensing Reconstruction of Hyperspectral Imagery Jointly Using Low Rank and Sparse Prior

孙玉宝 1吴泽彬 2吴敏 3刘青山4

作者信息

  • 1. 南京信息工程大学信息与控制学院,江苏南京 210044
  • 2. 南京理工大学计算机科学与工程学院与江苏省光谱成像与智能感知重点实验室,江苏南京 210094
  • 3. 南京理工大学计算机科学与工程学院与江苏省光谱成像与智能感知重点实验室,江苏南京 210094
  • 4. 南京军区南京总医院医学工程科,江苏南京 210002
  • 折叠

摘要

Abstract

A new compressed sensing model is proposed to reconstruct hyperspectral image .In the encoder side ,block-dialog measurement matrix formed by permuted noiselets transform is used to randomly measure the signal of each channel independently . In the decoder side ,the low rank and sparse representation models are firstly constructed to decompose hyperspectral data matrix into low rank and sparse parts ,and the low rank part is further sparsely decomposed .Then ,the intra-channel low rank prior and the inter-channel sparse prior are jointly utilized to reconstruct the compressed data .A numerical optimization algorithm is also proposed to solve the reconstruction model by augmented lagrange multiplier method .Every sub-problem in the iteration formula admits analyti-cal solution after introducing auxiliary variable and linearization operation .The complexity of the numerical optimization algorithm is reduced .The experimental results verify the effectiveness of our algorithm .

关键词

压缩感知/低秩先验/稀疏先验/增广拉格朗日乘子算法

Key words

compressed sensing/low rank prior/sparse prior/augmented Lagrange multiplier method

分类

信息技术与安全科学

引用本文复制引用

孙玉宝,吴泽彬,吴敏,刘青山..联合低秩与稀疏先验的高光谱图像压缩感知重建[J].电子学报,2014,(11):2219-2224,6.

基金项目

国家自然科学基金(No .61300162,No .81201161);江苏省自然科学基金(No .BK2012045,No .BK20131003);中国博士后基金(No .20110491429);江苏省博士后基金(No .1101083C);江苏省光谱成像与智能感知重点实验室基金 ()

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文