| 注册
首页|期刊导航|电子学报|基于弱监督学习的去噪受限玻尔兹曼机特征提取算法

基于弱监督学习的去噪受限玻尔兹曼机特征提取算法

杨杰 孙亚东 张良俊 刘海波

电子学报Issue(12):2365-2370,6.
电子学报Issue(12):2365-2370,6.DOI:10.3969/j.issn.0372-2112.2014.12.005

基于弱监督学习的去噪受限玻尔兹曼机特征提取算法

Weakly Supervised Learning with Denoising Restricted Boltz mann Machines for Extracting Featu res

杨杰 1孙亚东 1张良俊 1刘海波1

作者信息

  • 1. 武汉理工大学光纤传感技术与信息处理教育部重点实验室,湖北武汉430070
  • 折叠

摘要

Abstract

Existing feature extraction algorithms are difficult to capture useful information from complex images .A feature extraction approach is proposed based on the weakly supervised learning with denoising restricted Boltzmann machine(RBM).First, a standard RBM is pre-trained in an unsupervised learning way,which provides a hierarchical mode with a visible layer and a hidden layer.Second,for the visible layer,a stochastic binary switch node is employed.And for the hidden layer,it is divided into fore-ground-hidden nodes and background-hidden nodes based on the score of each hidden node’s activation values and times,thus we can achieve a binary mixture denoising RBMs .Finally,the pixel-wise denoising RBMs is trained by using small number label infor-mation and stochastic switch nodes through multiplicative interaction .The experimental results show that significant performance im-provement is achieved with our proposed method .

关键词

特征提取/受限玻尔兹曼机/目标识别

Key words

feature extraction/restricted Boltzmann machine(RBM)/object recognition

分类

信息技术与安全科学

引用本文复制引用

杨杰,孙亚东,张良俊,刘海波..基于弱监督学习的去噪受限玻尔兹曼机特征提取算法[J].电子学报,2014,(12):2365-2370,6.

基金项目

国家自然科学基金(No.51479159);交通运输部软科学项目 ()

电子学报

OA北大核心CSCDCSTPCD

0372-2112

访问量0
|
下载量0
段落导航相关论文