| 注册
首页|期刊导航|电子科技|一种基于改进W-SVM算法的概率密度估计

一种基于改进W-SVM算法的概率密度估计

曹华孝 王成 邵秀娟 龚凌

电子科技Issue(9):40-43,4.
电子科技Issue(9):40-43,4.

一种基于改进W-SVM算法的概率密度估计

An Improved Probability W-SVM Algorithm Based on Density Estimates

曹华孝 1王成 1邵秀娟 1龚凌2

作者信息

  • 1. 四川师范大学成都学院,四川成都 611745
  • 2. 华为技术有限公司成都研究所,四川成都 611730
  • 折叠

摘要

Abstract

The probability density estimation algorithm based on W-SVM is studied.The existing algorithms only consider either the sampling time or the sample density , resulting in lager error probability density results .An improved W-SVM algorithm is proposed to improve the estimation precision by considering both the sample point of time and the use of area .Different types of penalty weighting coefficients are selected and normalized , and the most appropriate weighting factor is found by the grid optimization method .The simulation results show that the mean square error by the proposed improved probability weighted support vector density estimation is much smaller than that by traditional algorithms .

关键词

加权支持向量机/概率密度估计/加权系数/归一化

Key words

W-SVM/probability density estimation/weighting factor/normalized

分类

信息技术与安全科学

引用本文复制引用

曹华孝,王成,邵秀娟,龚凌..一种基于改进W-SVM算法的概率密度估计[J].电子科技,2014,(9):40-43,4.

基金项目

四川师范大学成都学院国家级大学生创新训练基金资助项目 ()

电子科技

1007-7820

访问量0
|
下载量0
段落导航相关论文