| 注册
首页|期刊导航|电子科技大学学报|基于遗传算法改进的粒子滤波重采样模型

基于遗传算法改进的粒子滤波重采样模型

张民 贾海涛 沈震

电子科技大学学报Issue(3):344-349,6.
电子科技大学学报Issue(3):344-349,6.DOI:10.3969/j.issn.1001-0548.2015.03.005

基于遗传算法改进的粒子滤波重采样模型

Improved Resampling Procedure Based on Genetic Algorithm in Particle Filter

张民 1贾海涛 2沈震2

作者信息

  • 1. 电子科技大学图书馆 成都 611731
  • 2. 电子科技大学电子科学技术研究院 成都 611731
  • 折叠

摘要

Abstract

Particle filtering is a nonlinear and non-Gaussian dynamical filtering system. It has found widespread applications in detection, navigation, and tracking problems. The strong maneuverability of target tracking brings heavy impact on particle attributes in resampling process of particle filters, such as, particle state, particle weights, and so on. This paper proposes a new particle filter algorithm based on genetic algorithm optimization. This algorithm combines the hereditability and aberrance of the genetic algorithm into the resampling procedure of particle filter to improve the adaptability of maneuvering target tracking.

关键词

遗传算法/机动目标跟踪/非线性滤波器/粒子滤波/重采样

Key words

genetic algorithm/maneuvering target tracking/nonlinear filtering/particle filter/particle resampling

分类

信息技术与安全科学

引用本文复制引用

张民,贾海涛,沈震..基于遗传算法改进的粒子滤波重采样模型[J].电子科技大学学报,2015,(3):344-349,6.

基金项目

FoundationSupport by the National Science Foundation of China(61172117)基金项目国家自然科学基金(61172117) (61172117)

电子科技大学学报

OA北大核心CSCDCSTPCD

1001-0548

访问量0
|
下载量0
段落导航相关论文