解抛物型方程的八点隐式差分格式OA
The Implicit Difference Scheme of Eight Points for Solving the Parabolic Equations
针对一维抛物型方程的初边值问题,在网格剖分的基础上,先用待定系数法构造出了一个含有多个参数的差分格式,然后利用Taylor级数展开法,并结合偏微分方程本身的特性在xj、tn 处展开,使其达到一定的精度,最后解方程确定参数.按照这样的方法,构造了一个两层八点隐式差分格式,其格式的截断误差为O(τ3+h5),稳定性条件是0.001<r<0.231或0.236<r<0.772,并给出了相应的数值算例验证了方法的可行性和有效性.
Solutions to the initial boundary value problem with one-dimension parabolic equations were presented.On the basis of mesh,an implicit difference scheme with multiple variables was given by the undetermined parameters method.Then, it was expanded with Taylor series by combining the characteris-tics of partition differential equations in xj、tn , to reach certain accuracy.Finally, parameters of the equa-tion were determined.Via this method, an implicit differe…查看全部>>
周敏;高学军;董超
广东工业大学应用数学学院,广东广州510520广东工业大学应用数学学院,广东广州510520广东工业大学应用数学学院,广东广州510520
数理科学
一维抛物型方程隐式差分格式截断误差稳定性条件
one-dimension parabolic equationimplicit difference schemeorder of truncation errorstability condition
《广东工业大学学报》 2014 (4)
69-73,78,6
广东省自然科学基金资助项目( S2011040004273;S2011010005029).
评论