| 注册
首页|期刊导航|国防科技大学学报|结合非负张量表示与扩展隐 Dirichlet 分配模型的图像标注

结合非负张量表示与扩展隐 Dirichlet 分配模型的图像标注

钱智明 钟平 王润生

国防科技大学学报Issue(6):152-157,6.
国防科技大学学报Issue(6):152-157,6.DOI:10.11887/j.cn.201406027

结合非负张量表示与扩展隐 Dirichlet 分配模型的图像标注

Extended latent Dirichlet allocation for image annotation of nonnegative tensor representation

钱智明 1钟平 1王润生1

作者信息

  • 1. 国防科技大学 电子科学与工程学院,湖南 长沙 410073
  • 折叠

摘要

Abstract

Automatic image annotation is a challenge task due to the well-known semantic gap.Considering the difference between low-level visual features and high-level semantic concepts,the framework of automatic image annotation from the two aspects,image representation and semantic modeling,was constructed.For image representation,a new method of regularized nonnegative tensor representation (RNTP)was presented to abstract the detailed high-order tensor structures according to human’s intuitive recognition.A three-level hierarchical Bayesian model,extended latent Dirichlet allocation (ELDA),was developed for semantic modeling.In ELDA,each item of multiple image factors was modeled as a finite mixture over latent variables.Meanwhile,an efficient expectation-maximization algorithm based on variational inference was proposed for parameter estimation.Extensive experimental results are reported on the NUS-WIDE dataset to validate the effectiveness of our proposed solution to the automatic image annotation problem by comparing with other state-of-the-art methods.

关键词

图像标注/非负张量表示/扩展隐 Dirichlet分配/变分推理

Key words

image annotation/nonnegative tensor representation/extended latent Dirichlet allocation/variational inference

分类

信息技术与安全科学

引用本文复制引用

钱智明,钟平,王润生..结合非负张量表示与扩展隐 Dirichlet 分配模型的图像标注[J].国防科技大学学报,2014,(6):152-157,6.

基金项目

国家自然科学基金资助项目 ()

国防科技大学学报

OA北大核心CSCDCSTPCD

1001-2486

访问量4
|
下载量0
段落导航相关论文