高师理科学刊Issue(6):1-6,6.DOI:10.3969/j.issn.1007-9831.2014.06.001
拟线性双曲型方程组解的整体存在性
The global existence of quasilinear hyperbolic equations
摘要
Abstract
The Cauchy problem of first order quasilinear hyperbolic equations was considerded.Under the assum-ptions that the eigenvalues are weakly linearly degenerste,the non-homogeneous items meet the corresponding with the characteristics of the matching conditions,and Initial value satisfies slow attenuation is small,the global existence of quasilinear hyperbolic differential equations of Cauchy problem was obtained.On the basis of global classical solution exists,using normalized coordinates and wave decomposition theorem,some prior estimates of the molds of quasilinear hyperbolic equations was obtained,point by point decay estimate was proved.关键词
柯西问题/拟线性双曲型方程组/整体经典解Key words
Cauchy problem/quasilinear hyperbolic equation/global classical solution分类
数理科学引用本文复制引用
宋娈娈..拟线性双曲型方程组解的整体存在性[J].高师理科学刊,2014,(6):1-6,6.基金项目
国家自然科学基金资助项目(61171179,61227003,61301259);山西省自然科学基金资助项目(2012021011-2);高等学校博士学科点专项科研基金资助项目(20121420110006);山西省回国留学人员科研资助项目(2013-083);山西省高等学校优秀创新团队支持计划资助项目 ()