| 注册
首页|期刊导航|高师理科学刊|特征提取算法KPCA的改进与设计

特征提取算法KPCA的改进与设计

何新 李大辉 付军

高师理科学刊Issue(6):34-37,4.
高师理科学刊Issue(6):34-37,4.DOI:10.3969/j.issn.1007-9831.2015.06.011

特征提取算法KPCA的改进与设计

The improvement and design of KPCA feature extraction algorithm

何新 1李大辉 1付军1

作者信息

  • 1. 齐齐哈尔大学 计算机与控制工程学院,黑龙江 齐齐哈尔 161006
  • 折叠

摘要

Abstract

Transformation is the essence of the feature extraction.In view of the traditional kernel principal component analysis(KPCA)lack of extracted feature combination in classification problems,proposes an improved KPCA based on information measure.Data set uses the normative KDDCUP99 security audit data set.The aggregation degree within class and dispersion degree between class comprise information measure of each feature vector in the training sample.It is used to replace the cumulative contribution rate of the traditional KPCA.The selected feature combination is advantageous to classification.A large amount of experimental results show that the improved KPCA method at a lower dimension will have a more pronounced effect of classification.

关键词

KPCA/特征提取/分类

Key words

KPCA/feature extraction/classification

分类

信息技术与安全科学

引用本文复制引用

何新,李大辉,付军..特征提取算法KPCA的改进与设计[J].高师理科学刊,2015,(6):34-37,4.

基金项目

黑龙江省自然科学基金项目 ()

高师理科学刊

1007-9831

访问量4
|
下载量0
段落导航相关论文