| 注册
首页|期刊导航|华东交通大学学报|基于邻域极值数的协同粒子群优化算法

基于邻域极值数的协同粒子群优化算法

曾毅 朱旭生 廖国勇

华东交通大学学报Issue(4):71-76,6.
华东交通大学学报Issue(4):71-76,6.

基于邻域极值数的协同粒子群优化算法

Cooperative Particle Swarm Optimization Based on Neighborhood Extremum Number

曾毅 1朱旭生 1廖国勇1

作者信息

  • 1. 华东交通大学理学院,江西 南昌 330013
  • 折叠

摘要

Abstract

A cooperative particle swarm optimization based on the neighborhood extremum number is proposed. In this algorithm, the whole population is divided into several sub-populations evolving independently. The survival state of each sub-population is determined in terms of the neighborhood extremum number. Based on the survival state of each sub-population, corresponding control operation is implemented so as to improve the search ability of each sub-population and realize information sharing so that the sub-populations coevolve. The experimental re-sults show that the cooperative particle swarm optimization based on the neighborhood extremum number is an ef-fective and steady global optimization algorithm.

关键词

粒子群优化算法/协同进化/邻域极值数

Key words

PSO/cooperative coevolution/the neighborhood extremum number

分类

信息技术与安全科学

引用本文复制引用

曾毅,朱旭生,廖国勇..基于邻域极值数的协同粒子群优化算法[J].华东交通大学学报,2014,(4):71-76,6.

基金项目

国家自然科学基金项目(11161021);华东交通大学校立科研项目 ()

华东交通大学学报

OACSTPCD

1005-0523

访问量0
|
下载量0
段落导航相关论文