| 注册
首页|期刊导航|哈尔滨工程大学学报|基于模糊隶属度的近红外光谱模型鲁棒性分析

基于模糊隶属度的近红外光谱模型鲁棒性分析

高珏 李海森 徐超 朱培逸

哈尔滨工程大学学报Issue(3):312-316,5.
哈尔滨工程大学学报Issue(3):312-316,5.DOI:10.3969/j.issn.1006-7043.201312026

基于模糊隶属度的近红外光谱模型鲁棒性分析

Robustness analysis of near infrared spectroscopy model using fuzzy membership

高珏 1李海森 2徐超 3朱培逸1

作者信息

  • 1. 哈尔滨工程大学 水声工程学院,黑龙江 哈尔滨 150001
  • 2. 哈尔滨工程大学 水声技术重点实验室,黑龙江 哈尔滨150001
  • 3. 常熟理工学院 电气与自动化工程学院,江苏 常熟215500
  • 折叠

摘要

Abstract

In order to analyze the robustness of the near infrared spectroscopy model, this paper proposes a method of automatically generating the fuzzy membership by introducing the fuzzy membership when building the model. This method constructs a description function in the data domain of spectrum samples, introduces two factors⁃confi⁃dent factor and trashy factor, and then obtains the fuzzy membership function of samples from a mapping function. It automatically generates the fuzzy membership of each sample after optimizing parameters. On that basis, the re⁃gression model of apple sugar content was built based on fuzzy support vector machines ( FSVM) . The experimental results revealed that comparing with regular multivariate linear regression ( MLR) , partial least squares regression (PLSR) and support vector machines (SVM), the FSVM model showed the best performance with the change of training samples, under the influence of five noises, i.e. Gaussian noise, multiplicative noise, baseline shift, base⁃line slope and wavelength shift. The model shows better performance in robustness, especially generalization ability and anti⁃noise ability, primarily due to the contribution of fuzzy membership.

关键词

鲁棒性/模糊隶属度/近红外光谱/建模/噪声/数据域描述

Key words

robustness/fuzzy membership/near infrared spectroscopy/modelling/noise/data description

分类

信息技术与安全科学

引用本文复制引用

高珏,李海森,徐超,朱培逸..基于模糊隶属度的近红外光谱模型鲁棒性分析[J].哈尔滨工程大学学报,2015,(3):312-316,5.

基金项目

苏州市科技计划资助项目( SYN201109). ()

哈尔滨工程大学学报

OA北大核心CSCDCSTPCD

1006-7043

访问量0
|
下载量0
段落导航相关论文