| 注册
首页|期刊导航|化工学报|基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法

基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法

卢春红 熊伟丽 顾晓峰

化工学报Issue(12):4866-4874,9.
化工学报Issue(12):4866-4874,9.DOI:10.3969/j.issn.0438-1157.2014.12.030

基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法

Fault detection and diagnosis for nonlinear and multimode processes using Bayesian inference based PKPCAM approach

卢春红 1熊伟丽 1顾晓峰1

作者信息

  • 1. 江南大学轻工过程先进控制教育部重点实验室,江苏无锡 214122
  • 折叠

摘要

Abstract

the sub-principal component analysis usingk-means clustering and the kernel principal component analysis, the feasibility and effectiveness by the proposed Bayesian inference based PKPCAM method for fault detection and diagnosis in nonlinear and multimode process was validated on Tennessee Eastman process.

关键词

非线性多模态过程/概率核主元混合模型/贝叶斯推理/故障检测/故障诊断

Key words

nonlinear and multimode process/probabilistic kernel principal component analysis mixture model/Bayesian inference/fault detection/fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

卢春红,熊伟丽,顾晓峰..基于贝叶斯推理的PKPCAM的非线性多模态过程故障检测与诊断方法[J].化工学报,2014,(12):4866-4874,9.

基金项目

中央高校基本科研业务费专项基金项目(JUDCF12027, JUSRP51323B);江苏高校优势学科建设工程项目(PAPD);江苏省普通高校研究生创新计划项目(CXLX12_0734)。@@@@supported by the Fundamental Research Funds for the Central Universities of Ministry of Education of China (JUDCF12027, JUSRP51323B) (JUDCF12027, JUSRP51323B)

化工学报

OA北大核心CSCDCSTPCD

0438-1157

访问量0
|
下载量0
段落导航相关论文