| 注册
首页|期刊导航|火力与指挥控制|神经规则与案例融合的专家系统知识表示和推理

神经规则与案例融合的专家系统知识表示和推理

姚路 康剑山 曾斌

火力与指挥控制Issue(10):117-120,125,5.
火力与指挥控制Issue(10):117-120,125,5.

神经规则与案例融合的专家系统知识表示和推理

The Knowledge Representation and Reasoning of Expert System Used Neurule and Case Fusion

姚路 1康剑山 1曾斌1

作者信息

  • 1. 海军工程大学,武汉 430033
  • 折叠

摘要

Abstract

To express the knowledge of expert system,and makes the reasoning become more accurate and efficient,this paper introduces an approach that integrates symbolic rules,neural networks and cases. The method is to mix a rule that neural rules and case together. The difference between this method and the traditional rules of reasoning based on symbol ,even if there are some unknown input, it can also perform reasoning based on neural rules. Experiments show that,compared with the traditional expert system,hybrid reasoning can improve the efficiency and accuracy of fault diagnosis.

关键词

神经规则/案例检索/混合推理/故障诊断

Key words

neurule/case indexing/hybrid reasoning/fault diagnosis

分类

信息技术与安全科学

引用本文复制引用

姚路,康剑山,曾斌..神经规则与案例融合的专家系统知识表示和推理[J].火力与指挥控制,2014,(10):117-120,125,5.

基金项目

国家自然科学基金(71201172);湖北省科技计划自然科学基金资助项目 ()

火力与指挥控制

OA北大核心CSCDCSTPCD

1002-0640

访问量0
|
下载量0
段落导航相关论文