| 注册
首页|期刊导航|华中科技大学学报(自然科学版)|基于加权投票集成的极化SAR图像分类方法

基于加权投票集成的极化SAR图像分类方法

陈博 王爽 焦李成

华中科技大学学报(自然科学版)Issue(3):79-82,4.
华中科技大学学报(自然科学版)Issue(3):79-82,4.DOI:10.13245/j.hust.150316

基于加权投票集成的极化SAR图像分类方法

PolSAR image classification method based on weighted majority vote ensemble

陈博 1王爽 2焦李成1

作者信息

  • 1. 西安电子科技大学 智能感知与图像理解教育部重点实验室,陕西西安710071
  • 2. 西安电子科技大学 智能感知与计算国际联合研究中心,陕西西安710071
  • 折叠

摘要

Abstract

A polarimetric synthetic aperture radar (PolSAR ) image classification method based on weighted majority vote ensemble was proposed .The weighted majority vote ensemble was adopted to learn on different training samples ,in order to improve the classification results .Firstly ,the features were extracted from the PolSAR data ,and several groups of pixels in one class were chosen as the training sample subsets .After that ,the component classifiers learn on different training samples gave the predictive labels for the pixels ,and the weights were calculated on these labels .Finally ,the pre‐dictive labels were combined together to get the final classification result .The experimental results demonstrate the effectiveness of the proposed method on AIRSAR and Radarsat‐2 data .

关键词

图像分类/雷达极化/监督分类/极化SAR图像分类/分类器集成/加权投票准则

Key words

image classification/radar polarimetry/supervised classification/PolSAR image classifi-cation/classifer ensemble/weighted majority vote (WMV)

分类

信息技术与安全科学

引用本文复制引用

陈博,王爽,焦李成..基于加权投票集成的极化SAR图像分类方法[J].华中科技大学学报(自然科学版),2015,(3):79-82,4.

基金项目

国家重点基础研究发展计划资助项目(2013CB329402);国家自然科学基金资助项目(61271302,61272282,61202176,61271298);高等学校博士学科点专项科研基金资助项目(20100203120005). ()

华中科技大学学报(自然科学版)

OA北大核心CSCDCSTPCD

1671-4512

访问量0
|
下载量0
段落导航相关论文