| 注册
首页|期刊导航|电力系统保护与控制|基于SVM-MOPSO混合智能算法的配电网分布式电源规划

基于SVM-MOPSO混合智能算法的配电网分布式电源规划

刘煌煌 雷金勇 蔡润庆 陈钢 杨振纲 刘前进

电力系统保护与控制Issue(10):46-54,9.
电力系统保护与控制Issue(10):46-54,9.

基于SVM-MOPSO混合智能算法的配电网分布式电源规划

Distributed generation planning in distribution network based on hybrid intelligent algorithm by SVM-MOPSO

刘煌煌 1雷金勇 2蔡润庆 1陈钢 3杨振纲 4刘前进1

作者信息

  • 1. 华南理工大学电力学院,广东 广州 510640
  • 2. 南方电网科学研究院有限责任公司,广东 广州 510080
  • 3. 南方电网综合能源有限公司,广东 广州 510075
  • 4. 中国南方电网有限责任公司,广东 广州 510623
  • 折叠

摘要

Abstract

Regarding stochastic disturbance in power system brought by grid-connected distributed generation (DG), generally considering operational effectiveness, along with timing characteristics of wind speed and sunlight intensity, taking economy, power quality and environmental efficiency as goals, the optimization model of stochastic chance-constrained programming is built. The hybrid intelligent algorithm is used, which simulates the uncertainty functions based on support vector machine (SVM) and solves the model by multi-objective particle swarm optimization (MOPSO), and then the Pareto non-inferior decision set is obtained. Simulation results show that the planning model can fully take into account randomness, timing characteristics and grid-connected probability distribution of DG, and improve the efficiency of the algorithm, then verify the rationality and validity of the proposed approach. Moreover, the introduction of Pareto front gives fully choices to policymakers and possesses more engineering value.

关键词

分布式电源规划/时序特性/混合智能算法/支持向量机模拟/多目标粒子群算法

Key words

distributed generation planning/timing characteristics/hybrid intelligent algorithm/support vector machine simulation/multi-objective particle swarm optimization

分类

信息技术与安全科学

引用本文复制引用

刘煌煌,雷金勇,蔡润庆,陈钢,杨振纲,刘前进..基于SVM-MOPSO混合智能算法的配电网分布式电源规划[J].电力系统保护与控制,2014,(10):46-54,9.

基金项目

广东省战略性新兴产业核心技术攻关项目(2012A032300001) (2012A032300001)

电力系统保护与控制

OA北大核心CSCDCSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文