| 注册
首页|期刊导航|电力系统保护与控制|基于 GK 模糊聚类和 LS-SVC 的 GIS 局部放电类型识别

基于 GK 模糊聚类和 LS-SVC 的 GIS 局部放电类型识别

杨志超 范立新 杨成顺 张成龙 黄城

电力系统保护与控制Issue(20):38-45,8.
电力系统保护与控制Issue(20):38-45,8.

基于 GK 模糊聚类和 LS-SVC 的 GIS 局部放电类型识别

Identification of partial discharge in gas insulated switchgears based on GK fuzzy clustering & LS-SVM

杨志超 1范立新 2杨成顺 3张成龙 1黄城2

作者信息

  • 1. 南京工程学院电力工程学院,江苏 南京 211167
  • 2. 配电网智能技术与装备江苏省协同创新中心,江苏 南京 211167
  • 3. 江苏方天电力技术有限公司,江苏 南京 211102
  • 折叠

摘要

Abstract

The internal insulation defects in gas-insulated switchgear (GIS) can be reflected by partial discharge, so it is significant to recognize the type of partial discharge (PD) in GIS correctly. Four kinds of typical defection of the GIS are designed on the GIS intensive care research system. The extraction of the characteristics of PD gray image is the recognition features based on the PD sample data of the four kinds defects under different voltage levels. At the same time, considering the effect of interference on the partial discharge signal, GK fuzzy clustering algorithm is used to further process fractal feature and to extract the analysis of characteristics. At last, the PD type recognition device is designed based on the LS-SVC. Experimental results show that using the proposed method the PD type within GIS can be correctly recognized. In addition, the method proposed is stable and possesses higher recognition rate than the artificial neural network method.

关键词

气体绝缘组合电器/局部放电/故障识别/G-K 模糊聚类/最小二乘支持向量机

Key words

gas insulated switchgear (GIS)/partial discharge (PD)/fault identification/GK-fuzzy clustering/least squares support vector machine

分类

信息技术与安全科学

引用本文复制引用

杨志超,范立新,杨成顺,张成龙,黄城..基于 GK 模糊聚类和 LS-SVC 的 GIS 局部放电类型识别[J].电力系统保护与控制,2014,(20):38-45,8.

基金项目

江苏省高校自然科学研究基金面上项目(13KJB470006);江苏方天电力技术有限公司科技项目 (13KJB470006)

电力系统保护与控制

OA北大核心CSCDCSTPCD

1674-3415

访问量0
|
下载量0
段落导航相关论文