| 注册
首页|期刊导航|吉林大学学报(理学版)|求解Black-Scholes模型下美式看跌期权的有限差分法

求解Black-Scholes模型下美式看跌期权的有限差分法

李景诗 王智宇 朱本喜 宋海明

吉林大学学报(理学版)Issue(5):949-953,5.
吉林大学学报(理学版)Issue(5):949-953,5.DOI:10.13413/j.cnki.jdxblxb.2014.05.16

求解Black-Scholes模型下美式看跌期权的有限差分法

Finite Difference Method for Solving American Put Option under the Black-Scholes Model

李景诗 1王智宇 1朱本喜 1宋海明1

作者信息

  • 1. 吉林大学 数学学院,长春 130012
  • 折叠

摘要

Abstract

This paper deals with the American put option pricing problem governed by the Black-Scholes equation.Applying finite difference method coupled with Newton’s method to solve the Black-Scholes equation,we can get the numerical approximations of the option price and the optimal exercise boundary simultaneously.Numerical experiments verify the efficiency of the method.

关键词

Black-Scholes模型/美式看跌期权/最佳实施边界

Key words

Black-Scholes model/American put option/optimal exercise boundary

分类

数理科学

引用本文复制引用

李景诗,王智宇,朱本喜,宋海明..求解Black-Scholes模型下美式看跌期权的有限差分法[J].吉林大学学报(理学版),2014,(5):949-953,5.

基金项目

国家自然科学基金(批准号:11271157) (批准号:11271157)

吉林大学学报(理学版)

OA北大核心CSCDCSTPCD

1671-5489

访问量0
|
下载量0
段落导航相关论文