| 注册
首页|期刊导航|计算机工程|基于支持向量机的多通道癫痫发作预测

基于支持向量机的多通道癫痫发作预测

李志萍

计算机工程Issue(2):202-205,210,5.
计算机工程Issue(2):202-205,210,5.DOI:10.3969/j.issn.1000-3428.2014.02.043

基于支持向量机的多通道癫痫发作预测

Multi-channel Seizure Prediction Based on Support Vector Machine

李志萍1

作者信息

  • 1. 同济大学电子与信息工程学院控制工程系,上海 201804
  • 折叠

摘要

Abstract

Epilepsy is a brain disease. As the disease is sudden and repeated, which poses a great threat to safety of patients, effective prediction to seizure is of important significance to prevention and treatment. In this paper, dataset comes from University of Freiburg, Germany Prediction Center. Independent Component Analysis(ICA) is used to remove redundancy. Auto regression model is used to extract multi-channel features of changing trend along with time series. Prediction is transferred to classification by Support Vector Machine(SVM) and filter. All the results can be finally got by Monte Carlo statistical methods. Results show that the models can predict seizures in advance 30 min~70 min with false positive rate nearly zero, which may provide good theoretical basic for developing clinical epilepsy warning system.

关键词

癫痫发作预测/自回归模型/特征提取/独立成分分析/支持向量机/蒙特卡洛统计方法

Key words

seizure prediction/Autoregression(AR) model/feature extraction/Independent Component Analysis(ICA)/Support Vector Machine(SVM)/Monte Carlo statistics method

分类

信息技术与安全科学

引用本文复制引用

李志萍..基于支持向量机的多通道癫痫发作预测[J].计算机工程,2014,(2):202-205,210,5.

基金项目

留学回国人员科研启动基金资助项目“超大规模网络中突变现象的早期特征提取及其在癫痫预测中的应用” ()

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文