| 注册
首页|期刊导航|计算机工程|一种混合蜂群算法的自适应细菌觅食优化算法

一种混合蜂群算法的自适应细菌觅食优化算法

杜鹏桢 唐振民 孙研

计算机工程Issue(7):146-150,5.
计算机工程Issue(7):146-150,5.DOI:10.3969/j.issn.1000-3428.2014.07.029

一种混合蜂群算法的自适应细菌觅食优化算法

An Adaptive Bacterial Foraging Optimization Algorithm Mixed with Bee Colony Algorithm

杜鹏桢 1唐振民 1孙研1

作者信息

  • 1. 南京理工大学计算机科学与工程学院,南京 210094
  • 折叠

摘要

Abstract

The Bacterial Foraging Optimization Algorithm(BFOA) has poor global search ability and is easily trapped into local opti-mum. In order to solve these problems, an adaptive hybrid BFOA fused with Artificial Bee Colony(ABC) algorithm is proposed. Firstly, Employed Bees Style Chemotaxis(EC) is proposed, which greatly enhances the algorithm’s capability of global searching. Then the original fixed step size chemotaxis is changed into an adaptive step size one, which improves the solution precision. On the basis of above, an evaluation method for diversity is put forward to switch two chemotaxis automatically. In order to overcome degradation of diversity caused by direct copy, a copy method based on t-distribution disturbance is proposed. A scout bees style migration based on opposition-based learning is put forward to avoid premature. Simulation experimental results show that the proposed algorithm has a better performance in terms of optimization ability, convergence speed and population diversity compared with ABC algorithm and BFOA.

关键词

细菌觅食优化算法/人工蜂群算法/自适应步长/雇佣蜂式趋化/t分布扰动/对立学习

Key words

Bacterial Foraging Optimization Algorithm(BFOA)/Artificial Bee Colony(ABC) algorithm/adaptive step size/Employed Bees Style Chemotaxis(EC)/t-distribution disturbance/opposition-based learning

分类

信息技术与安全科学

引用本文复制引用

杜鹏桢,唐振民,孙研..一种混合蜂群算法的自适应细菌觅食优化算法[J].计算机工程,2014,(7):146-150,5.

基金项目

国家自然科学基金资助项目(91220301,61371040);高等学校学科创新引智计划基金资助项目(B13022)。 (91220301,61371040)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文