| 注册
首页|期刊导航|计算机工程|基于K-L散度的恶意代码模型聚类检测方法

基于K-L散度的恶意代码模型聚类检测方法

边根庆 龚培娇 邵必林

计算机工程Issue(12):104-107,113,5.
计算机工程Issue(12):104-107,113,5.DOI:10.3969/j.issn.1000-3428.2014.12.019

基于K-L散度的恶意代码模型聚类检测方法

Detection Method of Malicious Code Model Clustering Based on K-L Divergence

边根庆 1龚培娇 1邵必林2

作者信息

  • 1. 西安建筑科技大学 信息与控制工程学院,西安710055
  • 2. 西安建筑科技大学 管理学院,西安710055
  • 折叠

摘要

Abstract

Under the environment of the cloud computing, the network security vulnerabilities and attack increase rapidly because the service system is more and more complex, and the traditional pattern of malicious code detection technology and protection can not meet the requirement of cloud storage environment. This paper introduces Gaussian Mixture Model( GMM) to build the layered detection mechanism of the malicious code,uses the methods of information gain and document frequency to analyze the malicious code feature,combining K-L Divergence( KLD) to put forward a method of model clustering on malicious code based on K-L divergence method,this method can improve the malicious code detection rate and accurate efficiency than other methods. This paper adopts KDDCUP99 data sets to complete the process of data preprocessing and cluster analysis using the Weka open-source software. Experimental results show that the average malicious code detection time proposed by this paper improves by 16 . 6% compared with Bayes-algorithm;and meanwhile the rate of malicious code detection increases by 1. 05 % under the virtual environment.

关键词

恶意代码/高斯混合模型/K-L散度/模型聚类/信息增益/文档频率

Key words

malicious code/Gaussian Mixture Model( GMM)/K-L Divergence( KLD)/model clustering/information gain/document frequency

分类

信息技术与安全科学

引用本文复制引用

边根庆,龚培娇,邵必林..基于K-L散度的恶意代码模型聚类检测方法[J].计算机工程,2014,(12):104-107,113,5.

基金项目

国家自然科学基金资助项目(61272458)。 (61272458)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文