| 注册
首页|期刊导航|计算机工程|基于改进蚁群算法的云计算任务调度模型

基于改进蚁群算法的云计算任务调度模型

魏赟 陈元元

计算机工程Issue(2):12-16,5.
计算机工程Issue(2):12-16,5.DOI:10.3969/j.issn.1000-3428.2015.02.003

基于改进蚁群算法的云计算任务调度模型

Cloud Computing Task Scheduling Model Based on Improved Ant Colony Algorithm

魏赟 1陈元元1

作者信息

  • 1. 上海理工大学光电信息与计算机工程学院,上海200093
  • 折叠

摘要

Abstract

To solve the problem of resource scheduling problem in cloud computing, a parallel scheduling model is proposed,which can improve the task parallelism while maintaining the serial relationships between tasks. Dynamic tasks submitted by users are divided into sub-tasks in some serial sequences,and it puts into scheduling queue with different priorities according to running order. For these tasks in the same priority scheduling queue, an improved Delay Time Shortest and Fairness Ant Colony Optimization(DSFACO) algorithm is applied to schedule. Considering both fairness and efficiency,DSFACO algorithm applies to subtask scheduling problem to realize shortest delay time,thus improves the user satisfaction. Experimental results show DSFACO algorithm is better than the TS-EACO algorithm in fairness, efficiency and task delay time,and it can realize the optimal scheduling in cloud computing.

关键词

云计算/蚁群算法/任务调度/公平性/任务延迟时间

Key words

cloud computing/ant colony algorithm/task scheduling/fairness/task delay time

分类

信息技术与安全科学

引用本文复制引用

魏赟,陈元元..基于改进蚁群算法的云计算任务调度模型[J].计算机工程,2015,(2):12-16,5.

基金项目

国家自然科学基金资助项目(61170277) (61170277)

上海市教委科研创新基金资助项目(12YZ094)。 (12YZ094)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文