| 注册
首页|期刊导航|计算机工程|基于局部和全局信息的改进聚类算法

基于局部和全局信息的改进聚类算法

许小龙 王士同 梅向东

计算机工程Issue(6):165-171,7.
计算机工程Issue(6):165-171,7.DOI:10.3969/j.issn.1000-3428.2015.06.030

基于局部和全局信息的改进聚类算法

Improved Clustering Algorithm Based on Local and Global Information

许小龙 1王士同 1梅向东2

作者信息

  • 1. 江南大学数字媒体学院,江苏 无锡214122
  • 2. 赞奇科技发展有限公司,江苏 常州213000
  • 折叠

摘要

Abstract

Traditional K-means clustering algorithm is sensitive to the initialization. Spectral clustering operates on the similar matrix,and severely affects the cluster result. Clustering with local and global regularization does not take the distribution of data set into consideration. To solve this problem,this paper introduces the dispersion matrix to improve the clustering on the base of local and global regularization. The proposed algorithm takes the distribution of data set into consideration which combines the local information and dispersion matrix. The global optimal information is considered, and then it gets the final optimization problem which can be solved by the eigenvalue decomposition of a spare symmetric matrix. Several mentioned algorithms are tested on UCI machine learning data sets and public data mining data sets. Experimental results and comparison results show the greater performance of the proposed algorithm.

关键词

K-means算法/谱聚类/离散度矩阵/特征分解/UCI数据集

Key words

K-means algorithm/spectral clustering/dispersion matrix/characteristic decomposition/UCI data set

分类

信息技术与安全科学

引用本文复制引用

许小龙,王士同,梅向东..基于局部和全局信息的改进聚类算法[J].计算机工程,2015,(6):165-171,7.

基金项目

江苏省自然科学基金资助项目(BK2011417)。 (BK2011417)

计算机工程

OA北大核心CSCDCSTPCD

1000-3428

访问量0
|
下载量0
段落导航相关论文