| 注册
首页|期刊导航|计算机工程与应用|一种基于簇的极限学习机的在线学习算法

一种基于簇的极限学习机的在线学习算法

张敏 曾新苗 马长春

计算机工程与应用Issue(11):188-191,266,5.
计算机工程与应用Issue(11):188-191,266,5.DOI:10.3778/j.issn.1002-8331.1206-0328

一种基于簇的极限学习机的在线学习算法

Clustering_based and ELM_based online learning algorithm

张敏 1曾新苗 1马长春1

作者信息

  • 1. 重庆大学 计算机学院,重庆 400030
  • 折叠

摘要

Abstract

Traditional batch learning algorithm is slow to learn and has a high demand for space. This paper proposes a clutering_based and ELM_based online learning algorithm. In this algorithm, it takes the concept of clustering into extreme learning machine, combines with extreme learning machine, proposes a category_based, output_based standard of cluster-ing. At the same time, it also proposes a weighted Moore-Penrose algorithm to solve the weight vector connecting the hidden nodes and the output nodes. The result shows that this algorithm has good learning ability and high goodness of fit, pro-duces better generalization performance, and so on.

关键词

极限学习机//在线学习

Key words

extreme learning machine/cluster/online learning

分类

信息技术与安全科学

引用本文复制引用

张敏,曾新苗,马长春..一种基于簇的极限学习机的在线学习算法[J].计算机工程与应用,2014,(11):188-191,266,5.

基金项目

重庆市科委自然科学基金(No.CSTC2011BB2063)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文