| 注册
首页|期刊导航|计算机工程与应用|Gabor小波优化HMM算法的眼部疲劳状态识别

Gabor小波优化HMM算法的眼部疲劳状态识别

杨秋芬 桂卫华 胡豁生 阳若宁

计算机工程与应用Issue(15):13-17,5.
计算机工程与应用Issue(15):13-17,5.DOI:10.3778/j.issn.1002-8331.1402-0131

Gabor小波优化HMM算法的眼部疲劳状态识别

Gabor wavelet optimization and HMM algorithm in eye state fatigue recognition

杨秋芬 1桂卫华 2胡豁生 1阳若宁1

作者信息

  • 1. 中南大学 信息科学与工程学院,长沙 410083
  • 2. 湖南广播电视大学 理工教学部,长沙 410004
  • 折叠

摘要

Abstract

Distance education network learners can easily feel tired in the learning process due to the long-term lack of emotional interaction, and the learning fatigue usually presents by the eye state. To monitor the remote intelligent teaching system effectively, a kind of recognition algorithm of eye state in learning fatigue state is put forward based on Gabor wavelets and HMM. Due to the different characters of the eye openness degree in normal study, fatigue and confusion, the three learning states, the algorithm conducts gray difference processing to the eye image using Laplacian in YCbCr color space. It selects the second-dimension Gabor kernel function, constructing 48 most optimal filters, for 48 character-istic values. The 48 characteristic values will generate 48 characteristic vectors, and later HMM will be used to recog-nize the eye state of the eye by the set of observation sequence O formed by the characteristic vectors of the eye state image. The experimental result shows that the network learning fatigue recognition rate of this algorithm reaches 95.68%, with good robustness.

关键词

学习疲劳/网络学习/Gabor小波/隐马尔可夫模型

Key words

learning fatigue/E-learning/Gabor wavelet/Hidden Markov Model(HMM)

分类

社会科学

引用本文复制引用

杨秋芬,桂卫华,胡豁生,阳若宁..Gabor小波优化HMM算法的眼部疲劳状态识别[J].计算机工程与应用,2014,(15):13-17,5.

基金项目

湖南省十二五规划课题(No.XJK013BXX006);湖南省科技厅资助项目(No.2012GK3095);湖南省教育厅资助项目(No.12C1158)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文