| 注册
首页|期刊导航|计算机工程与应用|基于密度核估计的贝叶斯网络结构学习算法

基于密度核估计的贝叶斯网络结构学习算法

韩绍金 李建勋

计算机工程与应用Issue(15):107-112,6.
计算机工程与应用Issue(15):107-112,6.DOI:10.3778/j.issn.1002-8331.1307-0003

基于密度核估计的贝叶斯网络结构学习算法

Structure learning algorithm for Bayesian network based on probability density kernel estimation

韩绍金 1李建勋2

作者信息

  • 1. 上海交通大学 电子信息与电气工程学院,上海 200240
  • 2. 中国人民解放军63926部队
  • 折叠

摘要

Abstract

Structure learning algorithms for a Bayesian network mainly include hill-climbing algorithm, K2 algorithm and so on. However, these algorithms require large sample data sets. For the small sample sets in practical problems, this paper introduces the probability density kernel estimation method to achieve the expansion of the original sample set, and then uses the K2 algorithm for a Bayesian network structure learning. By optimizing the kernel function and window width, it achieves the effective expansion of the original sample set based on probability density kernel estimation;it confirms the variable order based on mutual information, and then establishes a Bayesian structure learning algorithm based on a small sample set. Simulation results show that the algorithm is effective and practical.

关键词

贝叶斯网络/小样本结构学习/K2算法

Key words

Bayesian network/structure learning based on small sample set/K2

分类

信息技术与安全科学

引用本文复制引用

韩绍金,李建勋..基于密度核估计的贝叶斯网络结构学习算法[J].计算机工程与应用,2014,(15):107-112,6.

基金项目

国家重点基础研究发展规划(973)(No.2009CB824900);国家自然科学基金(No.61175008,No.60935001);航天支撑基金(No.2011-HT-SHJD002)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文