| 注册
首页|期刊导航|计算机工程与应用|基于改进停机准则的SMO算法

基于改进停机准则的SMO算法

韩顺成 马小晴 陈进东 潘丰

计算机工程与应用Issue(16):31-34,61,5.
计算机工程与应用Issue(16):31-34,61,5.DOI:10.3778/j.issn.1002-8331.1208-0471

基于改进停机准则的SMO算法

Improved stopping criteria based SMO algorithm

韩顺成 1马小晴 1陈进东 1潘丰1

作者信息

  • 1. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
  • 折叠

摘要

Abstract

In SMO training process, standard KKT stopping criteria will lead to training speed declining along with training progress. According to the optimum theory, if the dual gap is zero, convex quadratic optimization problem will also obtain global optimal solution. Therefore, an improved stopping criteria of SMO is proposed in this paper, it combines the duality gap and standard KKT condition as the stopping criteria. This algorithm can improve the training speed without training accuracy decrease. Two cases experimental simulating results corroborate the efficiency of this algorithm.

关键词

支持向量机回归/序列最小优化算法/对偶间隙/KKT条件/停机准则

Key words

Support Vector Regression/Sequential Minimal Optimization(SMO)/duality gap/Karush-Kuhn-Tucker (KKT)/Stopping Criteria

分类

信息技术与安全科学

引用本文复制引用

韩顺成,马小晴,陈进东,潘丰..基于改进停机准则的SMO算法[J].计算机工程与应用,2014,(16):31-34,61,5.

基金项目

国家高技术研究发展计划(863)(No.2009AA05Z203);江苏高校优势学科建设工程资助项目。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文