| 注册
首页|期刊导航|计算机工程与应用|基于扰动免疫粒子群和K均值的混合聚类算法

基于扰动免疫粒子群和K均值的混合聚类算法

许竣玮 徐蔚鸿

计算机工程与应用Issue(22):163-169,7.
计算机工程与应用Issue(22):163-169,7.DOI:10.3778/j.issn.1002-8331.1401-0440

基于扰动免疫粒子群和K均值的混合聚类算法

Hybrid clustering algorithm based on disturbance immune particle swarm optimization and K-means

许竣玮 1徐蔚鸿1

作者信息

  • 1. 长沙理工大学 计算机与通信工程学院,长沙 410114
  • 折叠

摘要

Abstract

After analyzing the disadvantages of initialization sensitive and local extremum of the K-means algorithm, this paper proposes a hybrid clustering algorithm based on disturbance immune particle swarm optimization and K-means. The new clustering algorithm uses K-means to divide the particles into several categories and then chooses the optimal clustering domain to produce vaccine. After that, it adopts the vaccination and immune selection to improve the diversity of the particles. Meanwhile, in the algorithm, the disturbed arithmetic operators is introduced to break away from the local extremum by changing the movement of the particles when the times of the continuous stagnation exceed the threshold. The K-means clustering algorithm is employed to improve the convergence precision of the algorithm when the times of the disturbance meets the maximum. The experimental results show that the convergence accuracy and stability of the algorithm are good.

关键词

粒子群算法/K均值聚类算法/疫苗接种/免疫选择

Key words

particle swarm optimization algorithm/K-means clustering algorithm/vaccination/immune selection

分类

信息技术与安全科学

引用本文复制引用

许竣玮,徐蔚鸿..基于扰动免疫粒子群和K均值的混合聚类算法[J].计算机工程与应用,2014,(22):163-169,7.

基金项目

湖南省科技计划项目(No.FJ3005)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文