| 注册
首页|期刊导航|计算机工程与应用|最小二乘双支持向量回归机

最小二乘双支持向量回归机

卢振兴 杨志霞 高新豫

计算机工程与应用Issue(23):140-144,162,6.
计算机工程与应用Issue(23):140-144,162,6.DOI:10.3778/j.issn.1002-8331.1301-0136

最小二乘双支持向量回归机

Least square twin support vector regression

卢振兴 1杨志霞 1高新豫1

作者信息

  • 1. 新疆大学 数学与系统科学学院,乌鲁木齐 830046
  • 折叠

摘要

Abstract

In this paper Least Square Twin Support Vector Regression(LSTSVR)is proposed, which is formulated via the idea of Twin Support Vector Regression(TSVR). LSTSVR breaks the idea which ε-band is constructed by two parallel hyperplanes in traditional Support Vector Regression(SVR). Actually, LSTVR employes two non-parallel hyperplanes to construct the ε-band, in which each hyperplane determinates a half ε-bond, and obtain the final regression. So the regression function fits the distribution of dataset and the algorithm has better generalization ability. In addition, in LSTSVR, the main computing cost is to solve two smaller systems of linear equations, so the computational complexity is low. The experimental results indicate that the proposed algorithm has certain advantage in generalization ability and computational efficiency.

关键词

回归问题/支持向量回归机/双支持向量回归机/最小二乘双支持向量回归机

Key words

regression problem/support vector regression/twin support vector regression/least square twin support vector regression

分类

数理科学

引用本文复制引用

卢振兴,杨志霞,高新豫..最小二乘双支持向量回归机[J].计算机工程与应用,2014,(23):140-144,162,6.

基金项目

国家自然科学基金(No.11161045)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文