| 注册
首页|期刊导航|计算机工程与应用|基于抽样的Deep Web模式匹配框架

基于抽样的Deep Web模式匹配框架

袁淼 王鑫

计算机工程与应用Issue(3):117-123,7.
计算机工程与应用Issue(3):117-123,7.DOI:10.3778/j.issn.1002-8331.1303-0331

基于抽样的Deep Web模式匹配框架

Deep Web schema matching frame based on sampling

袁淼 1王鑫1

作者信息

  • 1. 合肥工业大学 计算机与信息学院,合肥 230009
  • 折叠

摘要

Abstract

The dual correlation mining frame has a low precision when some special schemas are in the set. Inspired by bagging algorithm in machine learning, a schema matching frame based on sampling is proposed. The frame randomly sample several subsets form input schemas, then execute the DCM matcher on each subset. The frame will achieve a robust matching accuracy by synthesizing the results of each subset. Experimental results show that the precision is increased by 41.2%in average.

关键词

Deep Web/模式匹配/相关性挖掘/抽样

Key words

Deep Web/schema matching/dual correlation mining/sampling

分类

信息技术与安全科学

引用本文复制引用

袁淼,王鑫..基于抽样的Deep Web模式匹配框架[J].计算机工程与应用,2015,(3):117-123,7.

基金项目

安徽省自然科学基金(No.090412051)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文