| 注册
首页|期刊导航|计算机工程与应用|针对标记数据不足的数据流分类器

针对标记数据不足的数据流分类器

熊忠阳 周兴勤 张玉芳

计算机工程与应用Issue(6):124-128,5.
计算机工程与应用Issue(6):124-128,5.DOI:10.3778/j.issn.1002-8331.1304-0457

针对标记数据不足的数据流分类器

Data stream classifier with limited labelled data

熊忠阳 1周兴勤 1张玉芳1

作者信息

  • 1. 重庆大学 计算机学院,重庆 400030
  • 折叠

摘要

Abstract

Most algorithms for data streams have addressed the problems of infinite length and concept drifting. However, These algorithms need all instances to be labelled by human experts and then they use them as training set to get a classifier. It is impractical in a high-speed data stream environment because labelling instances are both time consuming and costly. Then if just using supervised learning method to train a classifier, a small number of labelled instances will get a poor clas-sifier. This paper proposes a classification algorithm for data stream based on active learning. The method selects a small part of instances to be labelled, which have low confidence when classifying. Thus the number of instances needed to be labeled is greatly reduced. The experimental results show that the proposed method can use a small number of labelled data to classify the concept-drifting data streams correctly.

关键词

数据流/分类/概念漂移/主动学习

Key words

data streams/classification/concept drifting/active learning

分类

信息技术与安全科学

引用本文复制引用

熊忠阳,周兴勤,张玉芳..针对标记数据不足的数据流分类器[J].计算机工程与应用,2015,(6):124-128,5.

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文