| 注册
首页|期刊导航|计算机工程与应用|卷积神经网络的FPGA并行加速方案设计

卷积神经网络的FPGA并行加速方案设计

方睿 刘加贺 薛志辉 杨广文

计算机工程与应用Issue(8):32-36,5.
计算机工程与应用Issue(8):32-36,5.DOI:10.3778/j.issn.1002-8331.1405-0335

卷积神经网络的FPGA并行加速方案设计

FPGA-based design for convolution neural network

方睿 1刘加贺 1薛志辉 1杨广文1

作者信息

  • 1. 清华大学 计算机科学与技术系,北京 100084
  • 折叠

摘要

Abstract

According to the characteristics of the Convolution Neural Network(CNN), a FPGA-based acceleration pro-gram which uses deep-pipeline architecture is proposed for the MNIST data set. In this program, theoretically 28 × 28 clock cycles can finish the whole calculation and get the output of the CNN. For the propagation stage of the training pro-cess, and in the same network structure and the same data set, this FPGA program with 50 MHz frequency can achieve nearly five times speedup compared to GPU version(Caffe), achieve eight times speedup compared to 12 CPU cores. While the FPGA program just costs 26.7%power which GPU version costs.

关键词

卷积神经网络/现场可编程门阵列(FPGA)/深度流水/加速

Key words

convolution neural network/Field Programmable Gate Array(FPGA)/deep-pipeline/acceleration

分类

信息技术与安全科学

引用本文复制引用

方睿,刘加贺,薛志辉,杨广文..卷积神经网络的FPGA并行加速方案设计[J].计算机工程与应用,2015,(8):32-36,5.

基金项目

国家高技术研究发展计划(863)(No.2010AA012302,No.2013AA01A208);国家自然科学基金(No.61040048,No.61303003, No.41374113)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文