| 注册
首页|期刊导航|计算机工程与应用|基于子空间特征融合的两级掌纹识别算法

基于子空间特征融合的两级掌纹识别算法

吴婕 任江涛

计算机工程与应用Issue(11):175-178,4.
计算机工程与应用Issue(11):175-178,4.DOI:10.3778/j.issn.1002-8331.1306-0106

基于子空间特征融合的两级掌纹识别算法

Two level palmprint recognition algorithm based on subspace features

吴婕 1任江涛2

作者信息

  • 1. 广州华侨医院 计算机中心,广州 510630
  • 2. 中山大学 软件学院,广州 510275
  • 折叠

摘要

Abstract

Principal Component Analysis(PCA)or Kernel Principal Component Analysis(KPCA)can only extract the linear or nonlinear features of palmprint, and single classifier recognition rate is very low, this paper proposes a two level classifier for palmprint recognition based on subspace features. Firstly, the PCA and KPCA are used to extract the linear or nonlinear features of palmprint, respectively, and the best fusion coefficient can be calculated by making the total distance of between-classes largest to get the optimal features of palmprint image, the Euclidean distance metric method is used to recognize palmprint image, if the palmprint image category is clearly, the recognition result is obtained, otherwise the palmprint image is put into support vector machine to recognize. Polyu palmprint image library is used to test the perfor-mance, the results show that, compared with other palmprint recognition methods, the proposed method has improved the palmprint recognition rate and recognition speed, and false accept rate and false reject rate are reduced.

关键词

掌纹识别/核主成分分析/欧式距离/支持向量机/特征提取

Key words

palmprint recognition/kernel principal component analysis/Euclidean distance/support vector machine/fea-ture extraction

分类

信息技术与安全科学

引用本文复制引用

吴婕,任江涛..基于子空间特征融合的两级掌纹识别算法[J].计算机工程与应用,2015,(11):175-178,4.

基金项目

广东省自然科学基金项目(No.9151009001000045)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文