| 注册
首页|期刊导航|计算机工程与应用|基于岭回归的RVPMCD滚动轴承故障诊断方法

基于岭回归的RVPMCD滚动轴承故障诊断方法

杨宇 欧阳洪 潘海洋 程军圣

计算机工程与应用Issue(12):255-259,5.
计算机工程与应用Issue(12):255-259,5.DOI:10.3778/j.issn.1002-8331.1307-0332

基于岭回归的RVPMCD滚动轴承故障诊断方法

Rolling bearing fault diagnosis method based on RVPMCD

杨宇 1欧阳洪 1潘海洋 1程军圣1

作者信息

  • 1. 湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082
  • 折叠

摘要

Abstract

Aiming at the morbid problem on least-squares fit of variable predictive model, Ridge regression-Variable Predic-tive Model based Class Discriminate(RVPMCD)is put forward. By introducing the ridge parameter on the method, the mean square error on fitting and the effect of multicollinearity on parameter estimation are reduced, and the distortion phenomenon of the least squares regression fit parameter in the original method is improved, therefore, more accurate prediction models can be built up. The feature value of vibration signal of rolling bearings is extracted as feature vector. Then, the RVPMCD method is used to establish prediction model of training samples, and eventually pattern recognition would be carried out by using the established prediction models. The experimental results show that the classification method based on Ridge Regression-Variable Predictive Model can identify work status and fault type of rolling bearings more effectively.

关键词

岭回归/基于岭回归的多变量预测模型分类方法(RVPMCD)/滚动轴承/故障诊断

Key words

ridge regression/Ridge regression-Variable Predictive Model based Class Discriminate(RVPMCD)/rolling bearing/fault diagnosis

分类

机械制造

引用本文复制引用

杨宇,欧阳洪,潘海洋,程军圣..基于岭回归的RVPMCD滚动轴承故障诊断方法[J].计算机工程与应用,2015,(12):255-259,5.

基金项目

国家自然科学基金(No.51175158,No.51075131);湖南省自然科学基金(No.11JJ2026);中央高校基本科研业务费专项基金资助项目。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文