| 注册
首页|期刊导航|计算机工程与应用|改进蚁群算法在SVM参数优化研究中的应用

改进蚁群算法在SVM参数优化研究中的应用

高雷阜 张秀丽 王飞

计算机工程与应用Issue(13):139-144,6.
计算机工程与应用Issue(13):139-144,6.DOI:10.3778/j.issn.1002-8331.1307-0281

改进蚁群算法在SVM参数优化研究中的应用

Application of improved ant colony algorithm in SVM parameter optimization selection

高雷阜 1张秀丽 1王飞1

作者信息

  • 1. 辽宁工程技术大学 理学院,辽宁 阜新 123000
  • 折叠

摘要

Abstract

SVM parameter selection determines SVM classification accuracy and generalization ability, and its lack of theoretical guidance parameter optimization, ACO-SVM model is proposed, it predicts the SVM classification accuracy as the objective function, and improves the ant colony algorithm, with the introduction of search and updates the pheromone based on time-varying function update policy, uses the ant colony algorithm parallelism, positive feedback mechanism and strong robustness, in order to achieve optimal goals and get the optimal combination of parameters of SVM. The results of numerical value experiments show that the improved Ant Colony Optimization algorithm for SVM parameters selection has better optimization performance and higher classification accuracy. This method has the better parallelism and strong global optimization ability.

关键词

支持向量机/蚁群优化算法/参数优化/分类正确率

Key words

Support Vector Machine(SVM)/Ant Colony Optimization Algorithm(ACOA)/parameter optimization/classification accuracy

分类

信息技术与安全科学

引用本文复制引用

高雷阜,张秀丽,王飞..改进蚁群算法在SVM参数优化研究中的应用[J].计算机工程与应用,2015,(13):139-144,6.

基金项目

辽宁省教育厅基金项目(No.L2012105)。 ()

计算机工程与应用

OA北大核心CSCDCSTPCD

1002-8331

访问量0
|
下载量0
段落导航相关论文