| 注册
首页|期刊导航|计算机科学与探索|基于有效距离的谱聚类算法

基于有效距离的谱聚类算法

光俊叶 刘明霞 张道强

计算机科学与探索Issue(11):1365-1372,8.
计算机科学与探索Issue(11):1365-1372,8.DOI:10.3778/j.issn.1673-9418.1405038

基于有效距离的谱聚类算法

Spectral Clustering Algorithm Based on Effective Distance

光俊叶 1刘明霞 1张道强2

作者信息

  • 1. 南京航空航天大学 计算机科学与技术学院,南京 210016
  • 2. 泰山学院 信息科学技术学院,山东 泰安 271021
  • 折叠

摘要

Abstract

Based on existing distance metrics and the traditional spectral clustering algorithm, this paper proposes a new spectral clustering based on effective distance (SCED). Specifically, the proposed SCED algorithm uses effective distance to replace conventional Euclidean distance, by considering global properties of data that are reflected by sparse reconstruction coefficients. In effective distance, the similarity of a sample pair is evaluated by using not only the distance between these two samples, but also distances between one specific sample and other related samples. Sparse reconstruction coefficients are employed to reflect such global relationship among samples. The experimental results on ten UCI benchmark datasets demonstrate the efficiency of the proposed SCED algorithm.

关键词

谱聚类/有效距离/距离度量

Key words

spectral clustering/effective distance/distance metric

分类

信息技术与安全科学

引用本文复制引用

光俊叶,刘明霞,张道强..基于有效距离的谱聚类算法[J].计算机科学与探索,2014,(11):1365-1372,8.

基金项目

The Natural Science Foundation for Distinguished Young Scholar of Jiangsu Province under Grant No. BK2013003(江苏省杰出青年科学基金) ()

the Specialized Research Fund for the Doctoral Program of Higher Education of China under Grant No.20123218110009(高等学校博士学科点专项科研基金) (高等学校博士学科点专项科研基金)

the Fundamental Research Funds of NUAA under Grant No. NE2013105(南京航空航天大学基本科研业务费) (南京航空航天大学基本科研业务费)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文