| 注册
首页|期刊导航|计算机科学与探索|多核学习纹理特征的无参考图像质量评价

多核学习纹理特征的无参考图像质量评价

严大卫 桑庆兵

计算机科学与探索Issue(12):1517-1524,8.
计算机科学与探索Issue(12):1517-1524,8.DOI:10.3778/j.issn.1673-9418.1405036

多核学习纹理特征的无参考图像质量评价

Blind Image Quality Assessment with Texture Feature via Multiple Kernel Learning

严大卫 1桑庆兵1

作者信息

  • 1. 江南大学 物联网工程学院,江苏 无锡 214122
  • 折叠

摘要

Abstract

Because of the irregular features extracted from images with various types of distortion, the single kernel method cannot get the ideal result, this paper presents a non-reference image quality evaluation method based on multiple kernel learning for various learning types of distortion. Firstly this paper does a conversion of the gray scale image with the structure tensor and the phase congruency, then extracts the secondary statistical features of gray level-gradient co-occurrence matrix from them, finally inputs these features into hierarchical multiple kernel learning machine for training and gets the quality score. The random experiment results on multiple image library show that the new method results are consistent with the subjective evaluation values, and have better generalization.

关键词

无参考图像质量评价/多核学习/灰度-梯度共生矩阵/结构张量/相位一致

Key words

non-reference image quality assessment/multiple kernel learning/gray level-gradient co-occurrence matrix/structure tensor/phase congruency

分类

信息技术与安全科学

引用本文复制引用

严大卫,桑庆兵..多核学习纹理特征的无参考图像质量评价[J].计算机科学与探索,2014,(12):1517-1524,8.

基金项目

The National Natural Science Foundation of China under Grant No.61170120(国家自然科学基金) (国家自然科学基金)

the Natural Science Foundation of Jiangsu Province of China under Grant No. BK2011147(江苏省自然科学基金) (江苏省自然科学基金)

the Prospective Research Project of Jiangsu Province under Grant No. BY2013015-41(江苏省产学研项目) (江苏省产学研项目)

计算机科学与探索

OA北大核心CSCDCSTPCD

1673-9418

访问量0
|
下载量0
段落导航相关论文