| 注册
首页|期刊导航|计算技术与自动化|基于EDA算法的改进KPCA的某型测角仪的状态监测与故障预测研究

基于EDA算法的改进KPCA的某型测角仪的状态监测与故障预测研究

孔凡胜 王竹林

计算技术与自动化Issue(2):19-23,5.
计算技术与自动化Issue(2):19-23,5.

基于EDA算法的改进KPCA的某型测角仪的状态监测与故障预测研究

Electronic System Based on EDA Algorithm Improve the KPCA Condition Monitoring and Fault Prediction Research

孔凡胜 1王竹林1

作者信息

  • 1. 军械工程学院 导弹工程系,河北 石家庄 050003
  • 折叠

摘要

Abstract

Condition monitoring based on electronic system as the research background,the traditional Kernel Principal Component Analysis (Kernel Principal Component Analysis,KPCA)do in the process of condition monitoring data feature dimension reduction process,makes the circuit state data at the same time of eliminating redundant information,as well as the corresponding calculation model algorithm greatly reduces computation steps,but KPCA method of dimension reduction data processing for the contribution rate of the data sample inadequacies in the ability to recognize,though achieved the pur-pose of dimension reduction,but information on the characteristics of the sample data retention capability shortcomings.This article USES the method of Empirical Mode Decomposition (Empirical Mode Decomposition,the EMD)was carried out on the output signal as sample data collection and processing,design based on Fisher criterion of state information recognition a-bility analysis,the Estimation of Distribution Algorithms (population algorithm,referred to as EDA)to improve the KPCA analysis research,through the data processing,maximum retention state master information,make the circuit system de-crease experimental error in the process of condition monitoring,fault prediction to lay the foundation for the follow-up.

关键词

KPCA/EDA/Fisher准则/EMD/信息识别

Key words

KPCA/EDA/fisher criterion/EMD/information identification

分类

信息技术与安全科学

引用本文复制引用

孔凡胜,王竹林..基于EDA算法的改进KPCA的某型测角仪的状态监测与故障预测研究[J].计算技术与自动化,2015,(2):19-23,5.

计算技术与自动化

OACSTPCD

1003-6199

访问量2
|
下载量0
段落导航相关论文