| 注册
首页|期刊导航|计算机与数字工程|基于改进 NPGA 算法的多目标优化云任务调度算法

基于改进 NPGA 算法的多目标优化云任务调度算法

杨燕

计算机与数字工程Issue(7):1196-1201,1216,7.
计算机与数字工程Issue(7):1196-1201,1216,7.DOI:10.3969/j.issn1672-9722.2015.07.009

基于改进 NPGA 算法的多目标优化云任务调度算法

An Improved Multi-objective Optimization Algorithm Based on NPGA for Cloud Task Scheduling

杨燕1

作者信息

  • 1. 扬州职业大学 扬州 225009
  • 折叠

摘要

Abstract

As cloud computing continues to evolve ,task scheduling under the traditional single‐objective optimization has been unable to meet the user's requirements for quality of service .This paper selects the running time and cost and load balance of establishing a multi‐objective optimization of cloud task scheduling model ,an improved multi‐objective niche Pare‐to genetic algorithm(NPGA) is proposed to speed up evolution and avoid premature convergence through a similar task se‐quence crossover(STOX) operating and shift mutation .In addition ,the size of comparison set and niche radius are selected a‐daptively to improve convergence speed .Simulation results show that improved NPGA algorithm is better to maintain diver‐sity and distribution of Pareto optimal solutions in the cloud scheduling .

关键词

多目标优化/云任务调度/小生镜 Pareto 遗传算法/服务质量要求

Key words

multi-objective optimization/cloud task scheduling/niche Pareto genetic algorithm/quality of service

分类

信息技术与安全科学

引用本文复制引用

杨燕..基于改进 NPGA 算法的多目标优化云任务调度算法[J].计算机与数字工程,2015,(7):1196-1201,1216,7.

计算机与数字工程

OACSTPCD

1672-9722

访问量0
|
下载量0
段落导航相关论文