| 注册
首页|期刊导航|计算机与现代化|基于粒子群算法的抄纸过程PID神经元网络优化控制

基于粒子群算法的抄纸过程PID神经元网络优化控制

吴新生

计算机与现代化Issue(3):71-74,79,5.
计算机与现代化Issue(3):71-74,79,5.DOI:10.3969/j.issn.1006-2475.2015.03.015

基于粒子群算法的抄纸过程PID神经元网络优化控制

PID Neural Network Optimizing Control Based on Particle Swarm Optimization in Paper Process

吴新生1

作者信息

  • 1. 广东科学技术职业学院广州学院,广东 广州 510640
  • 折叠

摘要

Abstract

The optimal control of basis weight and moisture content in paper process with strong coupling, nonlinear and large time delay is difficult to achieve. To solve the problem, the optimal PID neural network controller by particle swarm optimization was adopted in the control system. Because the network structure was simple and a modified error back propagation algorithm with momentum factor was used, the learning speed was increased and the reaction time of the system became short. Particle swarm optimization was used to optimize the initial weights of PID neural network to avoid local optimization for obtaining better control accuracy. Simulation results show PID neural network optimizated by the network’ s initial weights is of better adaptability, de-coupling ability and robustness in the decoupling control of basis weight and moisture content. It is a new method for the control of basis weight and moisture content in paper process.

关键词

粒子群算法/PID神经元网络/优化/抄纸过程

Key words

particle swarm optimization( PSO)/PID neural network/optimization/paper process

分类

信息技术与安全科学

引用本文复制引用

吴新生..基于粒子群算法的抄纸过程PID神经元网络优化控制[J].计算机与现代化,2015,(3):71-74,79,5.

基金项目

广东省自然科学基金资助项目(8451064007000003) (8451064007000003)

计算机与现代化

OACSTPCD

1006-2475

访问量4
|
下载量0
段落导航相关论文