| 注册
首页|期刊导航|计算机应用研究|一种基于特征聚类的特征选择方法

一种基于特征聚类的特征选择方法

王连喜 蒋盛益

计算机应用研究Issue(5):1305-1308,4.
计算机应用研究Issue(5):1305-1308,4.DOI:10.3969/j.issn.1001-3695.2015.05.006

一种基于特征聚类的特征选择方法

Novel feature selection method based on feature clustering

王连喜 1蒋盛益2

作者信息

  • 1. 广东外语外贸大学 图书馆,广州 510420
  • 2. 语言工程与计算广东省社会科学重点实验室,广州 510006
  • 折叠

摘要

Abstract

Feature selection has become a very useful pre-processing technology in data mining and machine learning.This paper proposed a mean-similarity measure and a new feature selection method based on feature clustering (named FSFC)in the unsupervised learning.Firstly,the method divided the entire feature space into a set of homogeneous subspaces when a clustering algorithm was used for the full feature set.Then it formed the final feature set by selecting some representative fea-tures from each cluster.At last,it removed the irrelevant and redundant features.Experimental results on UCI datasets show that the performance of dimensionality reduction and classification with C4.5 and naive Bayes obtained by FSFC is close to the several states of art supervised feature selection algorithms.

关键词

特征选择/特征聚类/相关度/无监督学习

Key words

feature selection/feature clustering/similarity/unsupervised learning

分类

信息技术与安全科学

引用本文复制引用

王连喜,蒋盛益..一种基于特征聚类的特征选择方法[J].计算机应用研究,2015,(5):1305-1308,4.

基金项目

国家自然科学基金资助项目(61202271);国家社会科学基金资助项目(13CGL130);国家教育部人文社会科学资助项目(14YJC870021);广东省自然科学基金资助项目(S2012040007184);广东省普通高校科技创新资助项目(2012KJCX0049,2013KJCX0069);广东省科技计划资助项目 ()

计算机应用研究

OA北大核心CSCDCSTPCD

1001-3695

访问量0
|
下载量0
段落导航相关论文