| 注册
首页|期刊导航|计算机应用与软件|一种改进的基于支持向量机的多类分类方法

一种改进的基于支持向量机的多类分类方法

赵亮

计算机应用与软件Issue(12):233-236,4.
计算机应用与软件Issue(12):233-236,4.DOI:10.3969/j.issn.1000-386x.2014.12.056

一种改进的基于支持向量机的多类分类方法

AN IMPROVED SVM-BASED MULTI-CLASS CLASSIFICATION ALGORITHM

赵亮1

作者信息

  • 1. 重庆邮电大学计算机科学与技术学院 重庆400065
  • 折叠

摘要

Abstract

In light of the deficiency of existing SVM multi-class classification algorithm in classification accuracy, we propose an improved SVM decision tree multi-class classification algorithm.In order to minimise the impact of the error accumulation to greatest extent, the algorithm uses the idea of vector projection as the standard to measure class separation, thus constructs an unbalanced decision tree.Furthermore, it selects different punishment factors from positive and negative samples at the nodes of decision tree to counteract the impact from unbalanced data sets.At last, it introduces KNN to co-recognise the data sets with SVM.Analysing and comparing diffident methods by the simulation experiment on handwritten digit recognition data sets, it is shown that this method can effectively improve the classification accuracy.

关键词

支持向量机/多类分类/决策树/投影向量/惩罚因子/KNN

Key words

Support vector machines( SVM)/Multi-class classification/Decision tree/Vector projection/Punishment factor k-nearest neighbour algorithm(KNN)

分类

信息技术与安全科学

引用本文复制引用

赵亮..一种改进的基于支持向量机的多类分类方法[J].计算机应用与软件,2014,(12):233-236,4.

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文