| 注册
首页|期刊导航|计算机应用与软件|基于组合相似度的优化协同过滤算法

基于组合相似度的优化协同过滤算法

查九 李振博 徐桂琼

计算机应用与软件Issue(12):323-328,6.
计算机应用与软件Issue(12):323-328,6.DOI:10.3969/j.issn.1000-386x.2014.12.079

基于组合相似度的优化协同过滤算法

AN OPTIMISED COLLABORATIVE FILTERING ALGORITHM BASED ON COMBINED SIMILARITY

查九 1李振博 1徐桂琼1

作者信息

  • 1. 上海大学管理学院 上海200444
  • 折叠

摘要

Abstract

Collaborative filtering is a most widely used recommendation technique in personalised recommendation system.With the increase in numbers of user and item, the sparsity of data becomes an important factor affecting the recommendation quality.Therefore, the six-type combined similarities are presented, which combines two traditional similarity metrics of the adjusted cosine similarity and the Pearson correlation with the structure similarity metrics such as Jaccard coefficient, Salton coefficient and IUF coefficient.Experiment done on MovieLens shows that the combined similarity-based optimised collaborative filtering algorithm raises a lot in MAE, RMSE, recall, coverage and precision, and improves recommendation quality as well.

关键词

推荐系统/协同过滤/组合相似度

Key words

Recommendation system/Collaborative filtering/Combined similarity

分类

信息技术与安全科学

引用本文复制引用

查九,李振博,徐桂琼..基于组合相似度的优化协同过滤算法[J].计算机应用与软件,2014,(12):323-328,6.

基金项目

国家自然科学基金项目(11201290)。 ()

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文