| 注册
首页|期刊导航|计算机应用与软件|基于混合粒子群优化 SVM 算法的红斑鳞状皮肤病诊断

基于混合粒子群优化 SVM 算法的红斑鳞状皮肤病诊断

孙海峰 孙秀玲 齐恩铁 马志广

计算机应用与软件Issue(6):192-197,211,7.
计算机应用与软件Issue(6):192-197,211,7.DOI:10.3969/j.issn.1000-386x.2015.06.048

基于混合粒子群优化 SVM 算法的红斑鳞状皮肤病诊断

DIAGNOSING ERYTHEMATO-SQUAMOUS DISEASE BASED ON HYBRID PARTICLE SWARM OPTIMISATION SVM

孙海峰 1孙秀玲 1齐恩铁 2马志广1

作者信息

  • 1. 长春理工大学光电信息学院 吉林 长春 130012
  • 2. 长春市信息中心 吉林 长春 130022
  • 折叠

摘要

Abstract

The diagnosis of erythemato-squamous disease is a difficult problem in dermatology.In view of this,we propose a hybrid particle swarm optimisation-based support vector machine (SVM)model,namely HAPSO-SVM,for improving the accuracy of erythemato-squamous disease diagnosis.The model takes into account the same important roles on the SVM model played by both the feature selection mechanism and the parameter optimisation,and uses hybrid adaptive particle swarm optimisation (HAPSO)to implement the feature selection mechanism and parameter optimisation simultaneously.Meanwhile,the linear-weighted multi-objective function designed comprehensively considers both the classification accuracy rate and the number of support vectors,therefore improves the accuracy and efficiency of the algorithm.Results show that the proposed algorithm not only achieves small number of support vectors and finds the most related features of erythemato-squamous disease,but also obtains much higher classification accuracy rate,it is proved to be the effective diagnosis model for erythemato-squamous disease.

关键词

混合自适应 PSO/红斑鳞状皮肤病诊断/混合模型/支持向量机

Key words

Hybrid adaptive PSO/Diagnosis of erythemato-squamous disease/Hybrid model/Support vector machine

分类

信息技术与安全科学

引用本文复制引用

孙海峰,孙秀玲,齐恩铁,马志广..基于混合粒子群优化 SVM 算法的红斑鳞状皮肤病诊断[J].计算机应用与软件,2015,(6):192-197,211,7.

基金项目

吉林省长春市教育厅(吉教科验字[2012]第72号)。 ()

计算机应用与软件

OACSCDCSTPCD

1000-386X

访问量0
|
下载量0
段落导航相关论文