| 注册
首页|期刊导航|江西农业大学学报|基于BP神经网络的林木资源资产批量评估模型优化

基于BP神经网络的林木资源资产批量评估模型优化

吕丹 郑世跃 欧阳勋志 郭孝玉

江西农业大学学报Issue(5):984-989,6.
江西农业大学学报Issue(5):984-989,6.

基于BP神经网络的林木资源资产批量评估模型优化

Optimization of Mass Appraisal Model for Forest Resource Assets Based on the BP Neural Network

吕丹 1郑世跃 2欧阳勋志 1郭孝玉1

作者信息

  • 1. 江西农业大学 林学院,江西 南昌 330045
  • 2. 江西省兴国县林业局,江西 兴国 342400
  • 折叠

摘要

Abstract

Mass appraisal is of high efficiency,high precision,low cost,satisfies the needs of vast-amount evaluation.In this study,BP neural network was applied to mass appraisal of mid-age forest assets evaluation. By comparing different learning algorithms and the numbers of hidden layer nodes,selecting layer factors,using sensitivity analysis method which revealed the factors’ influence degree to the assessed value,the model struc-ture of BP neural network was optimized.The results showed that Bayesian regularization method was better than L-M algorithm;the contribution to the assessed values of the four factors including age,rate,accumula-tion,tree species was more than 60%;the best model structure was BR9-10-1.Its mean absolute error was 32.46 yuan/hm2 ,mean absolute percentage error was 1.28%,and decision coefficient was 0.999 7.The model has high fitting accuracy and generalization ability thus meets the requirement of mass appraisal of mid-age forest resource assets.

关键词

林木资源资产/批量评估/BP神经网络/敏感性分析

Key words

forest assets evaluation/mass appraisal/BP neural network/sensitivity analysis method

分类

管理科学

引用本文复制引用

吕丹,郑世跃,欧阳勋志,郭孝玉..基于BP神经网络的林木资源资产批量评估模型优化[J].江西农业大学学报,2014,(5):984-989,6.

基金项目

国家自然科学基金(31160159,31360181)和高等学校博士学科点专项科研基金博导类资助课题 ()

江西农业大学学报

OA北大核心CSCDCSTPCD

1000-2286

访问量0
|
下载量0
段落导航相关论文