| 注册
首页|期刊导航|空军工程大学学报(自然科学版)|基于压缩感知的在线多示例学习目标追踪

基于压缩感知的在线多示例学习目标追踪

韩亚颖 王元全

空军工程大学学报(自然科学版)Issue(5):71-75,5.
空军工程大学学报(自然科学版)Issue(5):71-75,5.DOI:10.3969/j.issn.1009-3516.2014.05.018

基于压缩感知的在线多示例学习目标追踪

Visual Tracking with Multiple Instance Learning Based on Compressive Sensing

韩亚颖 1王元全1

作者信息

  • 1. 天津理工大学计算机与通信工程学院,天津,300384
  • 折叠

摘要

Abstract

Visual tracking is one of the most popular research topics in the domain of computer vision.It is a challenging task to develop an effective and efficient tracking algorithm because of template drift prob-lems.To alleviate the drift,the multiple instance learning (MIL)method has been applied to target track-ing.However,there must be a sufficient amount of useful data for online MIL to learn at the outset, which actually increases the computational complexity.In this paper,an effective tracking algorithm is proposed which uses an online MIL based on the compressed appearance model to accomplish obj ect track-ing.In order to decrease the computational complexity and obtain sufficient data for online learning adap-tive appearance model,Features are extracted by non-adaptive random proj ections of the multi-scale image feature space based on compressive sensing theories.The experimental results on various videos show that the proposed method has a satisfactory performance in real-time obj ect tracking.

关键词

目标追踪/多示例学习/压缩感知

Key words

visual tracking/multiple instance learning/compressive sensing

分类

电子信息工程

引用本文复制引用

韩亚颖,王元全..基于压缩感知的在线多示例学习目标追踪[J].空军工程大学学报(自然科学版),2014,(5):71-75,5.

基金项目

天津市自然科学基金资助项目(11JCZDJC15600) (11JCZDJC15600)

空军工程大学学报(自然科学版)

OA北大核心CSCDCSTPCD

2097-1915

访问量0
|
下载量0
段落导航相关论文